

2 × MegaPfu Premix

#21808

Version 18.1.0

■ 产品简介

2 × MegaPfu Premix 是一种即用型高保真 PCR 预混液,含有 MegaPfu DNA polymerase、buffer、dNTP Mixture 以及稳定剂等。使用时,只需在制品溶液中加入模板和引物便可进行 PCR 反应,大大简化了操作过程,降低了 PCR 操作过程中污染的风险。本产品中使用的 MegaPfu DNA Polymerase 具有 5'→3'方向的 DNA 聚合酶活性和 3'→5'的 DNA 外切酶活性,能纠正 DNA 扩增过程中产生的碱基错配,是一款高保真 PCR 快速反应酶。使用本品扩增得到的 PCR 产物为平末端,若做 TA 克隆需加 A 处理后再与 T 载体连接。本产品扩增产物可适用于 2 × Ezmax® Universal CloneMix (ToloBio #24305)。

■ 产品组成

组分	21808-01	21808-02	21808-03
2 × MegaPfu Premix	1 mL	5 × 1 mL	3 × 21808-02

[●] 预混液置于-20℃保存, 避免反复冻融。

■ 保存条件

-20℃储存, ≤0℃运输。

■ 实验流程

1. 冰上配制反应体系

组分	体积
2 × MegaPfu Premix	25 μL
Primer l (10 μM)	2 μL
Primer 2 (10 μM)	2 μL
Template DNA ^a	x μL
ddH_2O	Up to 50 μL

a.针对不同来源或类型的模板,所需的反应浓度不同,下表为 50 µl 反应体系推荐的模板使用量:

模板种类	模板起始量
动植物基因组 DNA	0.1-1 μg
大肠杆菌基因组 DNA	10-100 ng
cDNA	1-5 μL (不超过 PCR 反应总体积的 1/10)
质粒 DNA	0.1-10 ng
λDNA	0.5-10 ng

TOLOBIO 官网 | www.tolobio.com

咨询 | 400-032-6070

销售 | sale@tolobio.com

支持 | support@tolobio.com

2. 反应程序

Stage	程序	温度	时间	循环数
Stage 1	预变性	95℃	2 min	1 cycle
		95℃	15 sec	
Stage 2	循环反应	56℃	15 sec	30-35 cycles
		72℃	30 sec/kb	
Stage 3	彻底延伸	72℃	5 min	1 cycle

- 退火温度需根据引物和模板实际的 GC 含量来作调整;如果需要,可以设置温度梯度摸索引物与模板结合的最适温度。
- 适当延长延伸时间有助于提高扩增产量。

■ 引物设计

- 1. 引物长度约 15-30 个碱基,引物 3'端最后一个碱基最好为 G 或者 C。
- 引物的 GC 含量控制在 40%-60%之间, Tm 值调整至 55~65℃为佳, 若模板本身 GC 含量过高或过低, 30%-80%也可。
- 3. 上下游引物 GC 含量不宜相差过大, Tm 值相差不超过 1℃为佳, 引物与模板非配对序列, 不应参与引物 Tm 值计算。
- 4. 引物中四种碱基(A、G、C、T)随机分布,可降低引物与模板相似性,避免出现聚嘌呤或聚嘧啶。
- 5. 引物自身及引物之间不应存在连续的互补序列(5个碱基),引物3'端避免出现发夹结构。
- 6. 引物设计好后,可对其进行 blast 检测确定是否有非特异性扩增, NCBI 或 SnapGene 等可实现该功能。
- 7. 各种模板的引物设计难度不一,对于模板本身比较困难的(如 GC 含量或 AT 含量过高),引物设计应退而求其次,尽量满足以上条件即可。